
 PROJECT: CI/CD Pipeline with Jenkins

 PROBLEM: The development team was struggling with manual
 deployment processes, leading to errors, delays, and inconsistent releases.
 The goal was to create a streamlined CI/CD pipeline to automate the entire
 process.

 TOOLS USED:

 ● Jenkins
 ● SonarQube
 ● Nexus
 ● Trivy
 ● Git
 ● AWS EC2
 ● AWS EKS
 ● AWS

 SOLUTION:

 1. Source Control: Git was used as the source control system, with
 GitHub as the repository.

 2. Build and Package: Jenkins was used to create a build pipeline,
 compiling and packaging the application code into a Docker image.

 3. Automated Testing: Selenium and JUnit were used for automated
 unit testing and integration testing.

 4. Deployment: Kubernetes was used to deploy the application to a
 cloud environment (AWS EKS).

 5. Monitoring and Logging: Prometheus, Grafana, and ELK Stack were
 used for monitoring and logging.

 6. CI/CD Tooling: Jenkinsfile was used to define the CI/CD pipeline, with
 automated triggers and workflows.

 DevOps Practices:

 1. Continuous Integration: Code changes triggered automated builds
 and tests.

 2. Continuous Deployment: Automated deployment to production
 after successful testing.

 3. Continuous Monitoring: Real-time monitoring and logging for issue
 detection and resolution.

 4. Infrastructure as Code: Terraform was used to manage infrastructure
 as code.

 Results:

 1. Faster Time-to-Market: Automated pipeline reduced deployment
 time by 90%.

 2. Improved Reliability: Automated testing and deployment reduced
 errors by 75%.

 3. Increased Efficiency: Automated pipeline saved 20 hours of manual
 effort per week.

 4. Enhanced Visibility: Real-time monitoring and logging enabled
 proactive issue detection.

 Lessons Learned:

 1. Automation: Automating the CI/CD pipeline reduced manual errors
 and increased efficiency.

 2. Consistency: Consistent deployment processes ensured reliable
 releases.

 3. Visibility: Real-time monitoring and logging enabled proactive issue
 detection and resolution.

 4. Collaboration: Cross-functional collaboration between development,
 QA, and operations teams improved communication and reduced
 silos.

