
‭PROJECT: CI/CD Pipeline with Jenkins‬

‭PROBLEM:‬‭The development team was struggling with manual‬
‭deployment processes, leading to errors, delays, and inconsistent releases.‬
‭The goal was to create a streamlined CI/CD pipeline to automate the entire‬
‭process.‬

‭TOOLS USED:‬

‭●‬ ‭Jenkins‬
‭●‬ ‭SonarQube‬
‭●‬ ‭Nexus‬
‭●‬ ‭Trivy‬
‭●‬ ‭Git‬
‭●‬ ‭AWS EC2‬
‭●‬ ‭AWS EKS‬
‭●‬ ‭AWS‬

‭SOLUTION:‬

‭1.‬ ‭Source Control: Git was used as the source control system, with‬
‭GitHub as the repository.‬

‭2.‬ ‭Build and Package: Jenkins was used to create a build pipeline,‬
‭compiling and packaging the application code into a Docker image.‬

‭3.‬ ‭Automated Testing: Selenium and JUnit were used for automated‬
‭unit testing and integration testing.‬

‭4.‬ ‭Deployment: Kubernetes was used to deploy the application to a‬
‭cloud environment (AWS EKS).‬

‭5.‬ ‭Monitoring and Logging: Prometheus, Grafana, and ELK Stack were‬
‭used for monitoring and logging.‬

‭6.‬ ‭CI/CD Tooling: Jenkinsfile was used to define the CI/CD pipeline, with‬
‭automated triggers and workflows.‬

‭DevOps Practices:‬

‭1.‬ ‭Continuous Integration: Code changes triggered automated builds‬
‭and tests.‬

‭2.‬ ‭Continuous Deployment: Automated deployment to production‬
‭after successful testing.‬

‭3.‬ ‭Continuous Monitoring: Real-time monitoring and logging for issue‬
‭detection and resolution.‬



‭4.‬ ‭Infrastructure as Code: Terraform was used to manage infrastructure‬
‭as code.‬

‭Results:‬

‭1.‬ ‭Faster Time-to-Market: Automated pipeline reduced deployment‬
‭time by 90%.‬

‭2.‬ ‭Improved Reliability: Automated testing and deployment reduced‬
‭errors by 75%.‬

‭3.‬ ‭Increased Efficiency: Automated pipeline saved 20 hours of manual‬
‭effort per week.‬

‭4.‬ ‭Enhanced Visibility: Real-time monitoring and logging enabled‬
‭proactive issue detection.‬

‭Lessons Learned:‬

‭1.‬ ‭Automation: Automating the CI/CD pipeline reduced manual errors‬
‭and increased efficiency.‬

‭2.‬ ‭Consistency: Consistent deployment processes ensured reliable‬
‭releases.‬

‭3.‬ ‭Visibility: Real-time monitoring and logging enabled proactive issue‬
‭detection and resolution.‬

‭4.‬ ‭Collaboration: Cross-functional collaboration between development,‬
‭QA, and operations teams improved communication and reduced‬
‭silos.‬


